식물 잎 햇빛

연구원들은 새로운 발견이 지구 및 지역 기후 모델을 개선하고 산림 및 초목 관리를 지원하며 작물 수확량 및 기후 변화가 농업에 미치는 영향에 대한 보다 정확한 예측을 제공할 것으로 기대합니다.

나뭇잎은 얼마나 오래 살까? 경제적인 결정입니다.

원숭이 퍼즐 나무의 잎은 수명이 20년 이상이지만 피케아 중국 공가산에서 자라는 나무는 수천 년 동안 생존할 수 있습니다. 가혹한 조건에서 자라지만 이 나무들은 천천히 자라며 잎은 일반적으로 평균 20년 동안 지속됩니다.

반면에 단풍잎은 한 계절밖에 살지 못하는 반면, 블루베리 잎은 수명이 고작 3개월이다.

그렇다면 나무 잎의 수명을 결정하는 것은 무엇일까요?

그 피상적으로 단순한 질문에 대한 답은 오늘 Han Wang and Colleagues

Dr. Han Wang and colleagues. Credit: Dr. Han Wang

“It’s all about the economic choices faced by plants,” says first author, Dr. Han Wang from Tsinghua University in Beijing.

“We already knew that conifers and other evergreen trees make longer-living leaves the closer they are to the poles,” she says. “Deciduous trees do the opposite. Their longest-lasting leaves are found in the tropics.”

“And we knew that long-lived leaves tend to be tougher and thicker, and more expensive to build.”

“Now, we have identified the major environmental factors at play, and summarised them in two equations,” she says. “These leaf economic traits are fundamental to the carbon cycle and nutrient economy.”

Leaf Economics

Relationship between leaf life (LL) and leaf mass per unit area in (1) evergreens and (2) deciduous plants. Credit: Dr. Han Wang et al

The team tested their equations using data from thousands of species from hundreds of ecosystems, drawn from the China Plant Trait Database and the Global Plant Trait Network.

“Each species is essentially taking a punt on the best way to maximize carbon absorption,” says co-author Professor Ian Wright from Macquarie University and Western Sydney University.

Ian Wright

Professor Ian Wright. Credit: Ian Wright

“Evergreen conifers growing in poor soil in areas with a long cold winter can only thrive if they make long-term investments in their leaves. Whereas deciduous trees, like the maple, race to create new leaves and capture carbon in the summer sun before leaf-drop in autumn,” he says. “The economically rational decision for a maple tree is to invest in fast-growing, cheap but flimsy leaves.”

Plants have been subject to profound changes in climate during their evolution. Glaciation and other large, and sometimes rapid, changes in recent geological times have resulted in major changes in vegetation. The human impact on climate and direct impact on vegetation are adding to the forces shaping plant communities, in ways that remain only partly understood.

The researchers propose that this research will not only explain what grows where today, but it will also move ecology into a predictive science that will:

  • enable better, more accurate global and regional climate models
  • allow land managers to better model forests and other vegetation, and predict how climate change will affect ecosystems
  • allow better estimation of crop yield and the impact of climate change on agriculture.

Reference: “Leaf economics fundamentals explained by optimality principles” by Han Wang, I. Colin Prentice, Ian J. Wright, David I. Warton, Shengchao Qiao, Xiangtao Xu, Jian Zhou, Kihachiro Kikuzawa and Nils Chr. Stenseth, 18 January 2023, Science Advances.
DOI: 10.1126/sciadv.add5667

The paper builds on twenty years of research led by Professor Mark Westoby and Professor Ian Wright at Macquarie University.

Their 2004 paper in Nature, ‘The World-wide leaf economics spectrum’ has been cited over 7,500 times and has been followed by papers on leaf photosynthetic capacity, leaf respiration costs, leaf nitrogen concentration, leaf size, and now, leaf lifespan.

“This body of work has transformed ecology,” says Professor Nathan Hart, Head of Macquarie University’s School of Natural Sciences. “It’s also key to ongoing work by Macquarie researchers on the impact of plant invasions, the resilience of horticultural species to climate change, and the form and function of plant species on the thousands of islands that surround the Australian mainland.”

The study was funded by the National Natural Science Foundation of China, the Schmidt Family Foundation, the Horizon 2020 Framework Programme, and the Australian Research Council.